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SUMMARY

A two~dimensional discrete vortex model was applied to turbulent flow over
a cavity at a Reynolds number based on cavity half-length of approximately
5 x 105, These model predictions are compared with new experimental data, both
on a time-average and on a spectral basis. The comparisons indicate that the
vortex model reasonably reproduces the mean velocity profiles of this complex
flow, while the turbulent intensity and Reynolds stress profiles are generally
overpredicted in magnitude. Spectral analyses show that the wortex model intro-
duces unrealistic low-frequency power which becomes less dominant as the model
becomes more disordered. In this state, the spectral power distribution of the
model is nearly in agreement with that of the data, being somewhat too low at
the higher frequencies and too high at the lower frequencies. The model is also
shown to be capable of reproducing the cavity feedback oscillation phenomenon.
These results indicate that even in a turbulent flow, part of the flow is nearly
deterministic, "determined” by the initial and boundary conditions on the flow.
This is the part of the flow which is represented by such vortex models and is
probably what has come to be called the "large-scale structure"™ of the flow.
This study suggests that vortex models merit further research as a means of sim-
ulating turbulent flow and calculating the resulting noise generation.

INTRODUCTION

Computation of the noise generated by a fluid flow from the dynamic
behavior of the flow itself has been a goal of the aeroacoustic community ever
since the original formulation of the relevant theory by Lighthill in 1952
(ref. 1). This effort has been hampered by many factors, particularly by the
fact that the acoustic sources depend on the nonlinear terms of the Navier-
Stokes equations, that sound, being a dynamic process, depends on the time-
varying structure of the flow, and that most flows of practical interest are
random in character. Thus, it has been only recently that serious attempts to
calculate sound production directly from a description of the flow itself have
been made.

The major advance in the understanding of fluid mechanics which may fin-
ally make such camputation feasible was the discovery (or rediscovery) of large-
scale structures in a turbulent jet by Crow and Champagne (ref. 2) in the early
1970's., Since that time, such structures have also been observed in mixing
layers and boundary layers over a wide range of Reynolds numbers., While the
role of these structures in the generation of sound is still being debated, it
is generally agreed that they are responsible for much of the dynamics of the
flow itself. Thus, they allow one to approach the temporal flow description
without being concerned with the total range of scales present in the complete
flow; insofar as the large scales are dominant, the most important aspects of
the flow can still be described.



One method of attempting to describe the large-scale flow structure has
been the discrete wortex model which represents the flow wvorticity by a collec-
tion of vortex singularities whose evolution is governed by the Biot-Savart law.
Such models have been developed by Acton (ref. 3), Clements (refs. 4, 5, and 6),
Chorin (ref. 7), Dowling (ref. 8), Davies and Hardin (ref. 9), and Leonard
(ref. 10), to name but a few. Further, utilizing the equivalent of Powell's
theory of vortex sound (ref. 11), several investigators (refs. 12, 13, 14, 15,
and 16) have shown that sound generation by these models may easily be camputed.
However, such models are basically deterministic. Thus, it has not been clear
exactly in what sense they model a turbulent flow field.

Experimental turbulent data and model predictions have been quantitatively
compared with varying degrees of success. For example, Chorin (ref. 7) has
shown good agreement between measured and predicted drag coefficients for a cyl-
inder in uniform flow over a wide range of Reynolds numbers. Acton (ref. 3)
obtained reasonable comparisons for the growth rate of a two-dimensional shear
layer when the finite thickness of the layer is modeled with care. Clements and
Maull (ref. 5) found good agreement for the Strouhal number and base pressure
produced by vortex shedding behind a blunt-based body, although the comparison
deteriorated dramatically when the base included a cavity. They also obtained
fair predictions of the mean velocity profiles for flow over a step. Finally,
Ashurst (ref. 17) showed that a vortex model tended to overpredict the turbu-
lent intensities and Reynolds stress in a turbulent mixing layer, although the
comparison could be greatly improved by taking the diffusion of the wvortex

cores into account.

In this paper, the flow field produced by such a vortex model is compared
with new experimental data for high Reynolds number flow over a cavity. These
data were obtained as a part of an extensive study of cavity noise generation
carried out at NASA Langley Research Center (refs. 18, 19, and 20). Camparison
is made on a spectral as well as on a time~average basis. This study not only
assesses the validity of wortex modeling but may also aid in the understanding
of the large-scale structure of turbulent flows.

The vortex model utilized in this work was developed by Hardin and Mason
(ref. 14) to compute sound generated by flow over a cavity in an aerodynamic
surface. This two-dimensional model is based upon a Schwarz-Cristoffel relation
which transforms the cavity geometry onto a plane and thus allows the inviscid
cavity flow to be obtained from the complex potential for uniform flow. The
shear layer formed by flow over the cavity leading edge is then described by the
insertion of discrete vortices., One wortex, whose circulation is determined by
application of the Kutta condition at the leading edge, is inserted during each
small time interval. The position of the vortices in the transform plane is
then obtained by numerical inversion of the transformation. The boundary con-
dition of zero normal velocity at the walls is satisfied by the inclusion of
image vortices. A vortex decay function is utilized in an attempt to include
the physical effects of the no slip condition. This parameter is found to be
critical in order for the model to exhibit the correct mean velocity. A vor~-
ticity stretching mechanism is also employed to simulate the transfer of turbu-
lent energy to the third dimension. The dynamic behavior of the flow can then
be followed by sequential solution of the governing flow equations in time.



DEVELOPMENT OF GOVERNING EQUATIONS

Consider flow over a two-dimensional cavity as shown in figure 1, that is,
a flow, which far fram any surface has a free-stream velocity Uy and sweeps
over a cavity of length L and depth D. This flow, of course, induces a
complicated motion within the cavity which is the primary interest of this
analysis.

The symbols used in this paper are defined in the appendix.

Nondimensional Equations for Flow Variables

In this analysis, where the fluid is taken to be incompressible and all
variables are nondimensionalized by the free-stream velocity, cavity half-
length, and fluid density, the flow field is governed by the Navier-Stokes
equations:
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where Uj are the total velocity components, p is the total pressure, a is
the inverse of the Reynolds number of the flow, and the Einstein summation con-
vention is employed. These equations govern the complete flow field and can,
in principle, be solved for realizations of turbulent flow regardless of the
Reynolds number (ref. 21). However, this approach becomes very costly in com~
puter resources as the Reynolds number increases (ref, 22). Thus, the only
feasible approach is to employ some sort of subgrid-scale modeling (ref. 23)
and to solve only for the larger scales., It is in the spirit of this type of
solution that discrete vortex modeling is best understood.

Stream—-Function/Vorticity Formulation

The discrete vortex technique utilizes a stream-function/vorticity for-
mulation of the governing equations. Assume that the total flow field is two-

dimensional; that is, U3 =0 and —— = 0. Then, there is only one nonzero

ox3
component of vorticity in the flow:
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which, from equation (2), must satisfy
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If a stream function V¥ is also introduced such that
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then equation (1) is satisfied and equation (3) becomes
V2 = -Q (5)

Equations (4) and (5) represent the stream—-function/vorticity formulation uti-
lized in the discrete vortex solution technique.

DISCRETE VORTEX MODEL

The discrete vortex model utilized in this study was developed by Hardin
and Mason (ref. 14) for evaluation of cavity noise production. Thus, only a
brief description is included in this paper. After nondimensionalization, the
cavity geometry appears as shown in figure 2(a), where d = 2D/L. 1If the com
plex variable z = x + iy is introduced, the cavity surface may be transformed
onto the real axis of the A-plane shown in figure 2(b) by the transformation
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where XA =7 + in, E[:, ] is the incomplete elliptic integral of the sec-
ond kind, and E[f] is the complete elliptic integral of the second kind.
The points A = *a are the transforms of the exterior cavity corners at

z = %] + id.

Solution Technique

With this transformation, the discrete wvortex solution for the flow field
is readily obtained. The governing equations are equations (4) and (5) which
must be solved subject to the boundary conditions

Uy =U2=0

on the cavity surface. The solution uses the idea of an impulsive start
(ref. 4) with the initial condition

Uy =Uy =0

everywhere.

Now, for the case of interest in this paper, the Reynolds number of the
flow is large; thus o (the inverse of the Reynolds number) is small. As a
approaches zero, equation (4) becomeés
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which implies that vorticity is conserved as it moves about in the flow; that
is, vortical fluid tends to remain vortical. Thus, at some time t, one can
imagine the flow region divided into small elements and the total vorticity in
each element replaced by a discrete vortex such that the circulation around the
element is conserved. These discrete vortices would then interact with each
other according to the Biot-Savart law to represent the ewvolution of the vor-
ticity distribution. This solution technique has been analyzed by Hald and

Del Prete (ref. 24) who have shown that it converges, at least for short times,
as the size of the elements is reduced.

Thus, for small o, the flow vorticity may be represented by a collection
of discrete vortices

N
Q(x,v,t) = z 'y 8(z-z3) (7)

i=1



where &( ) is the Dirac delta function, Iy 1is the circulation of the ith
vortex which is located at the point z = z;, and N is the number of vor-
tices in the flow at time t. Equation (5) is then satisfied by the imaginary
part of the complex potential

N N
i
F'{ In(A - Aj) + 5- zg T'i In(h = Ay*) (8)
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where )A; are the transforms of the vortex positions z; and
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The first term BA is the ideal (inviscid) flow solution and the second sum
consists of image vortices necessary to satisfy the condition of no flow through
the cavity walls. The velocity field may then be obtained by differentiation

. do
Uy = 10y = E;

and the motion of the wortices followed by numerical integration.

To satisfy the initial condition of interest, the flow is started at t =0
at which time it separates at the cavity leading edge and sheds worticity into a
shear layer. At each time step At, this vorticity is replaced by a discrete
vortex whose circulation is chosen such that the Kutta condition is satisfied

at the leading edge.

This is the solution technique which was developed in reference 14. 1In
the present analysis, three extensions of this technique have been made to
better model the physics of the flow. Two of these are concerned with the
viscosity of flow for which o is small but nonzero and the third with the

three-dimensionality of the flow.
Models for Flow Physics
The first extension results from an idea of Chorin (ref. 7). For nonzero

viscosity, equation (4) is just a diffusion equation in a moving medium. Thus,
in each time step At, the effect of the right side may be approximated by



adding to the motion of the vortices small random displacements Ax and Ay
such that

and

<Ax2> = <Ay2> = 20 At

where < > 1is the expectation operator. This technique leads to a tighter
rollup of the initial vortex sheet and has been shown to yield better agree-
ment with experiment (ref. 17).

The second extension of reference 14 was suggested by the observation that
the no slip condition on the cavity walls cannot be satisfied by this semi-
inviscid solution technique. In actuality, this condition causes positive vor-
ticity to be generated along the walls of the cavity which tends to cancel out
some of the large negative vorticity produced in the shear layer. 1In an attempt
to include this effect in a simple fashion, the circulation of each of the dis-
crete vortices was taken to be a function of time

Ty(t) = T(kg) + R(t = ty) (9)

where ti is the time at which the ith vortex was formed, T;(tj) is the ini-
tial circulation determined from the Kutta condition, and K is the circulation
decay rate. When the circulation becomes zero, the vortex is removed from the
calculation. This parameter also models, in a sense, the viscous dissipation of
turbulent energy in the flow.

The final change in the model of reference 14 attempts to account, in an
elementary fashion, for the three-dimensionality of the flow. Since in two
dimensions, the vortex stretching term of the Helmholtz equation is identi-
cally zero, there is no mechanism in the model for the transfer of energy to
the third dimension. However, in reality, the vortices formed by the shear
layer over the cavity are not infinitely long, but have length equal to the
cavity width W and are bounded by the cavity walls. Such a finite~length
vortex does not generate the same velocity at all points equidistant from it,
as does a wvortex filament. In fact, for the geometry of figure 3(a), it can
be shown that the velocity V induced by the vortex segment at the point P
is given by

r
V= —(cos a' + cos B')
4Th



Now, suppose two straight vortex segments, say n and k, are initially
separated by a distance h. Over a small time interval At, the velocity
induced on vortex k by vortex n stretches vortex k into a curved shape
as shown in figure 3(b). From equation (9), it can be determined that the cen-
ter point of vortex k has moved a distance & farther than its end points
where

Tn 2 ] I'n At

s

—_ - At
47h [] + (2h/W)2]]/2 [] + (/W) 2]1/2 4th

£ = (10)

for h << W. Thus, the vorticity of vortex k, which was originally all in the
direction of the cavity width, now has components in both that direction and in
the xy-plane, as shown in figure 3(b). The effect of this energy transfer is
included in the model by reevaluating the circulation of each vortex at every
time step through the relation developed with the help of equation (10),

W
Tp(t+ht) = Ty = Tk(t) (1)

1/2
2 T, At)2
(5] + ()
2 4th

where the nth vortex is taken as the one closest to vortex k and h is the
distance between them. The small component of vorticity in the xy-plane is
neglected in subsequent calculations. Note that equation (11) has an effect
similar to that of equation (9), but arises through a different physical
mechanism.

EXPERIMENTAL RESULTS

The flow measurements around the cavity were performed in the open jet
anechoic flow facility at the NASA Langley aircraft noise reduction laboratory
in conjunction with acoustic measurements. The cavity apparatus is shown in
figure 4., It has a continuously variable streamwise length L, two values for
the depth D of 3.19 cm and 5.11 cm, and a fixed width W of 5.08 cm. The
variable length for each of these depths was accomplished by the sliding blocks
shown in figure 4., The cavity apparatus was set in a 1.25-cm-thick tempered
aluminum plate, depicted in figure 5, which was curved downstream of the cavity
to eliminate trailing-edge noise effects. The plate was flush with the lower
lip of the nozzle (seen also in fig. 4). The leading edge of the cavity was
about 5.5 cm from the lip of the nozzle which measured 30 cm by 45 cm. Nozzle
exit Mach number varied from 0.116 to 0.362. The turbulence intensity in the
nozzle flow was about 1 percent. The velocity profile at the nozzle exit had
less than a 1.5-percent overshoot and a boundary-layer thickness of 0.5 cm at
the maximum velocity. This corresponds to a 0.61-cm thickness at the leading



edge of the cavity, assuming a turbulent boundary layer progressing over a
flat plate. The corresponding momentum thickness is 0.059 cm. This agrees
with the momentum thickness which was calculated from the mean velocity profile
for this velocity near the leading edge of the cavity.

Table I lists the cavity configurations, test Mach numbers, and measure-
ment locations for the velocity surveys. The five cases, or cavity configura-
tions, represented three values of length-to-depth ratio: 0.78 for a rather
deep cavity, 5.01 for a relatively shallow cavity, and 2.35 as an intermediate
value. Data were obtained at three velocities for each of these cases. Flow
profiles were obtained in the middle of the cavity width near the leading and
trailing edges except for cases 1 and 3 where only the leading-edge profiles
were obtained. The positions of the velocity surveys are given in the last
two columns of table I in terms of the distance in centimeters from the lead-
ing edge of the cavity.

A cross-wire (x-shaped hot~wire) anemometer was used to measure the veloc-
ity profiles. The wires were platinum-plated tungsten, 0.0038 mm in diameter
and 1,25 mm in length, and were operated in the linearized constant-temperature
mode. Time histories of the x- and y-components of the velocity were recorded
and subsequently analyzed by computer. The data were corrected according to
reference 25 for errors due to turbulence nonlinearities and irregular cooling
(not following the cosine law). The error in the mean measurements is less
than 3 percent. Results presented include mean velocity profiles, turbulence
intensity profiles, and mean Reynolds stress profiles for each case and test
velocity. A few spectra are also presented. These results are normalized by
the free-stream velocity U, which was taken to be the jet exit velocity.

The mean velocity profiles are shown in figure 6. When normalized by the
free-stream velocity, the profiles for a particular case and streamwise posi-
tion are generally independent of Mach number, the exception being at the
trailing edge for case 2. Evidently, the values exceeding 61/Uo =1 indi-
cate that the velocity overshoots its asymptotic value which would be measured
at larger values of Y. Near the leading edge, the mean velocity at Y¥/D =1
is nominally 0.55Uy; near the trailing edge, this value increases to 0.65U.
Although the shear flow inside the cavity is developing and cannot strictly be
considered self-similar, the spreading rate determined from the mean velocity
profiles near the leading and trailing edges is consistent with that for self-
similar shear layers as given in reference 26.

The turbulence intensity profiles are given in figure 7., The leading-edge
measurements for cases 1 and 3 are shown in figure 7(a). For these two cases,
where the cavity length is small (or where the cavity is considered deep), the
profiles of the streamwise and cross-stream turbulent velocity fluctuations,

u; and up respectively, have the same shape with the maximum occurring at
¥/D = 1. For cases, 2, 4, and 5, shown in figures 7(b), 7(c), and 7(d), respec-
tively, the uy profiles at the leading edge are similar to those obtained

in cases 1 and 3 in that the maximum value occurs at Y/D = 1. However, the

u; profile departs from this shape at the leading edge by maintaining high
levels of turbulence intensity down into the cavity. At the leading edge, the
the maximum turbulence intensity level for all cases is nominally 9 percent.
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At the trailing edge, the cross-stream turbulence intensity level reaches
13 percent at ¥/D = 1, while the streamwise turbulence intensity level ranges

from 15 percent to 20 percent.

The mean Reynolds stress profiles are given in figure 8. At the leading
edge, the maximum always occurs at Y¥/D = 1. At the trailing edge, the loca-
tion of the maximum (negative) value varies from outside to inside the cavity
depending on the velocity and cavity configuration.

Since the turbulence intensity levels and mean velocity profile shape
change with cavity configuration and, sometimes, with free-stream wvelocity, it
is difficult to make camparisons with data obtained in cavities of differing
configuration and test conditions. However, it should be pointed out that the
measurements reported herein are consistent with those of reference 27 in that
the profiles agree and the levels fall in the same range. Reference 27 con-
tains the only other measurements of the turbulence intensity profiles inside
the cavity that the authors found.

The spectral densities of the velocity fluctuations obtained from the
recorded time histories for case 2 at 124 m/s are shown in figure 9. These
results are typical of the spectra measured in the cavity. The analysis band-
width for these spectra is 30 Hz and each spectrum has at least 240 degrees of
freedom. Outside the cavity (¥/D = 1.45), the tonal aspects of the feedback
phenomenon are clearly seen in both the u; and u; spectra. As the hot-wire
probe descends into the cavity, the spectra take on a more broadband appear-
ance, although the wuj spectra remain predominantly peaked. The maximum root-
mean~square values of the velocity occur when Y¥/D = 1. Inside the cavity
(Y¥/D = 0.6), the tonal appearance of the spectra has faded in relation to the
broadband spectra of the turbulent flow.

COMPARISON OF MODEL RESULTS WITH EXPERIMENT

The experimental case chosen for comparison with the vortex model is case 2
of table I at the highest velocity of 124.2 m/s. For these data, L/D = 2.35
which is in the range of values most commonly seen in aircraft applications.
Further, the Reynolds number based on the cavity half-length is approximately
5 x 10° which approaches that found on an aircraft during landing approach.

The vortex model was programmed for the parametric values corresponding
to this case and run for 1000 time steps with a nondimensional step size
At = 0.05. This step size has been shown by previous work to be a reasonable
compromise between integration accuracy and camputation time. Figure 10 shows
an instantaneous realization of the flow field for a particular value of non-
dimensional time after the stationary state has been achieved. The symbols
in this figure are cross sections of the rectilinear vortices. Note that the
shear layer, which is initially represented by a linear array of wortices,
becomes unstable and breaks up into coherent masses of wvorticity which are
easily discernible. These large-scale structures are then swept downstream
to impinge on the trailing edge of the cavity. Also shown in the figure are
the two locations at which the experimental data were taken to give the reader
a physical feeling for the vortex model near these two positions.

10



Mean Velocity Profiles

In figure 11, the mean velocity profiles predicted by the vortex model at
the two measurement locations are compared with the experimental data. The
vortex model results were obtained by first allowing the model to run until a
steady state was achieved and then calculating time histories of the velocity
canponents U; and U; at the points of interest through differentiation of
equation (8). These were then time-averaged to obtain estimates of the mean
velocities U; and ﬁz. As can be seen, there is reasonable agreement between
the data and predictions except within the cavity itself at the trailing-edge
position where the streamwise velocity component is underpredicted and the
cross-stream component is overpredicted. The reason for this discrepancy
appears to be the three-dimensionality of the flow within the cavity.

The value of the circulation decay rate constant K in equation (9) was
chosen to make the 52 velocity camponent of the vortex model match the data
at 2X/L = -0.85 and Y¥/D = 1.0. The ideal fluid solution for the cavity
flow (the first term in equation (8)) results in a negative 52 velocity
component in this region. As can be shown from equation (8), in the vortex
model this negative velocity is opposed by a positive velocity camponent
induced by the high vorticity in the cavity. These must balance to yield the
near zero value seen in the experimental data. This necessary balance is
rather delicate, and thus the model is quite sensitive to the value of K
employed. The value used in the model, K = 0.00125, was found by trial and
error and did not quite make the velocity match, as seen in figure 11,

Turbulent Intensity Profiles

In figure 12, the turbulent intensity profiles predicted by the vortex
model are campared with the experimental data. The values for the vortex
model were again obtained by time-averaging the squared difference between
the steady-state velocity values and the appropriate mean velocities; that is,

u;? = (U; - ﬁi)z. As can be seen, the shapes of the profiles are generally
similar except that the predicted profiles at the trailing-edge position peak
slightly below the top of the cavity, while the data peak at the top of the
cavity. The predicted intensity levels are reasonable above the cavity, but
tend to be too high by about a factor of 2 within the cavity itself. This is
thought to be because the true three-dimensional character of the flow in the
cavity has not been well represented by the model. It was assumed that the
incorporation of equation (11) would help to alleviate this problem. However,
it had negligible effect except to reduce the value of the circulation decay
constant K required to obtain the correct velocity profiles.

High peaks in intensity can be seen in the predicted profiles at the level
of the cavity at the leading-edge position. The major reason for these peaks
is that many of the vortices being released from the leading edge of the cavity
pass quite close to the point where the velocity is being calculated, as can be
seen in figure 10. Thus, the singular nature of the vortices causes quite high
velocity fluctuations. In an attempt to remedy this situation, the wvortices
were assumed to have a finite core. If the point of interest fell within the

11
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core of one of the vortices, the velocity at the point was then computed using
Routh's rule (eq. (9) of ref, 14). As can be seen in figure 12, this attempt
was not entirely successful. The nondimensional vortex core size, used in all

the calculations in this paper, was 0.002.

However, as will be seen later, the spectra at the leading~edge position
are dominated by low-frequency power, apparently induced by this vortex singu-
larity problem. Also shown in figure 12 are intensity values obtained by high-
pass filtering the signals at 110 Hz, Filtering dramatically reduces the high
values at the level of the cavity at the leading-edge position, while generally
leading to better agreement with the data elsewhere.

In figure 13, the predicted Reynolds stress profiles, GTGE, at both mea-
surement locations are compared with the experimental data. As can be seen,
both the shapes and levels agree reasonably well except at the level of the
cavity at the leading-edge position. Here again a large peak appears in the
model, undoubtedly caused by the low-frequency power.

Spectra

Also of interest are comparisons of the vortex model with the data on a
spectral basis, particularly since the model was developed to calculate noise
which depends strongly on the time-dependent behavior of the flow. The major
difficulty with such an endeavor, however, is to obtain sufficient computed
values to yield an accurate spectral estimate; more camputer time is required
as the number of vortices increase. As mentioned before, the model was com-
puted with a nondimensional step size of At = 0.05 which had been chosen to
allow accurate determination of the vortex paths. For the case considered,
this corresponds to a dimensional time step AT = 24.1 us and Nyquist fre-
quency of approximately 21 kHz, Direct spectral analysis of these records
produced spectra with very little power above 7 kHz in agreement with the
experimental data. Thus, it became apparent that records with a step size
of 3 AT were adequate to estimate the spectra, even though this meant dis-
carding two-thirds of the computed values. At the leading-edde measurement
location, record lengths of 1000 values were obtained. The first 232 of these
values were discarded as being nonstationary and every third value of the
last 768 were selected to provide one record of 256 values with a step size
of 3 AT. This record was analyzed by the fast Fourier transform (FFT) tech-
nique to provide a spectral estimate with 2 degrees of freedom, a Nyquist fre-
quency of approximately 7 kHz, and a bandwidth of approximately 50 Hz. At the
trailing-edge location, record lengths of 2000 values were obtained. The first
464 of these values were discarded as being nonstationary and every third value
of the last 1536 was selected to provide 4 consecutive records of 128 values.
These records were adain analyzed by the FFT to yield spectral estimates with
8 degrees of freedom, a Nyquist frequency of approximately 7 kHz, and a band-
width of approximately 100 Hz. Typical spectra so obtained are shown in fig-
ure 14. These are spectra of the streamwise velocity component at 2X/L = 0.65
for three different values of Y/D. Obviously, these spectra are highly varia-
ble as one would expect for spectral estimates with so few degrees of freedom.
However, these spectra are reasonably similar and appear to contain consistent

peaks in the fregquency range from 0.6 to 3 kHz.
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As can be seen in figure 9, the experimental data also show reasonably
similar spectra at both the leading- and trailing-edge positions. Thus, to
reduce the variability of the spectra predicted by the vortex model and to
better define any peaks which might be present, it was determined to normalize
each spectrum by its mean square value and to average together all spectra for
a particular velocity camponent at a particular downstream location. Insofar
as these records are independent, this averaging nominally yields spectra with
10 degrees of freedom at the leading-edge location and 72 degrees of freedom
at the trailing-edge location.

Figures 15(a) and 15(b) show the resulting spectra at the two measurement
locations. Note that there is also considerable similarity between the spectra
of the streamwise and cross—-stream velocity camponents. At the leading-edge
location, where the vortex model is rather orderly (see fig., 10), the spectra
are dominated by tremendous low-frequency (<0.3 kHz) power, as mentioned pre-
viously. This is apparently an artifact of the wortex model due to represent~
ing the finite-thickness shear layer as an infinitesimal sheet. On the other
hand, at the trailing-edge location, where the vortex model has become more
disordered, the low-frequency power is much less dominant and distinct peaks
are present in the spectra similar to those observed in the experimental data
of figure 9.

The presence of these tones in the experimental data is a result of the
well-known self-sustaining oscillation of flow past cavities. This phenomenon
has been observed for many years and recently has been the subject of an excel-
lent review by Rockwell and Naudascher (ref. 28). This oscillation is pres-
ently understood in terms of a feedback mechanism. Vorticity is shed from the
leading edge of the cavity and convects down the length of the cavity at some
convection speed U, until it impinges on the trailing edge. An acoustic wave
travels back upstream at the speed of sound and, upon reaching the leading edge,
causes more vorticity to be shed. This explanation led Block (ref. 18) to
develop the relation,

n
Ngtr = n=1, 2, 3, « « ) {(12)

1 ( 0.51 4>
— + M{1 +
Ky L/D

for the Strouhal numbers at which the oscillations occur. Here n is the mode
number and Ky = Ug/Uy 1is the convection velocity ratio. This expression
agreed well with the tones observed in the far-field sound spectra radiated by
the cavity (ref. 19), which occur at the same frequencies as the cavity flow
oscillation phenamenon.

Of course, the vortex model is incompressible, resulting in an infinite
speed of sound, or conversely, an effective Mach number of zero. Thus, one
would expect the acoustic half of the feedback loop in the model to occur
instantaneously, so that from equation (12), the following simple relation
for the expected frequencies results:

13
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f,=n— Ky = — (n
n L v

1, 2, 3, « = 4) (13)

Taking U, = 0.6U,, the value most commonly employed, yields the frequencies
shown at the bottom of figure 15(b) for the first four oscillation frequencies.
Ordinarily only the first four can be observed experimentally (ref. 19)., These
frequencies are harmonics with the fundamental occurring at about 0.62 kHz.

As can be seen from the spectra of figure 15(b), the wvortex model also
exhibits preferred frequencies in this range. 1In fact, a fundamental frequency
close to 0.7 kHz and its first three harmonics appear to be present as well as
an unexplained oscillation near 1 kHz. As there can be little doubt that these
peaks are real, since the spectral estimates have approximately 72 degrees of
freedom, the vortex model does appear to predict the self-sustaining oscillation
phenomenon of the cavity, as speculated by Rockwell and Naudascher (ref. 28).
However, the frequencies are slightly shifted.

In figure 16, the spectral densities of the dimensional (nonnormalized)
streamwise velocity fluctuations as measured and as predicted by the model are
canpared at 2X/L = 0.65 and Y/D = 1,35, This point was chosen as one where
the mean square velocity fluctuations (integral of the spectrum) predicted by
the model nearly agreed with those measured, and thus the frequency comparison
would not be distorted by differences in power levels., As can be seen, the
vortex model tends to underpredict the spectral levels at the higher frequen-
cies which is compensated by an overprediction at the lower frequencies. This
is to be expected since there is no mechanism in the vortex model for the cas-
cade of energy to higher wave numbers that occurs in true turbulent flows.
Other than this power "tilt" and the shift in the peak frequencies due to
incompressibility, the spectral shapes are reasonably similar. This result
encourages further research into the use of vortex models to simulate turbu-
lence and to calculate the resulting noise radiation, particularly if the
physics of the energy cascade can be built into the model in some fashion.

Finally, with regard to the turbulent energy spectrum, it is of interest to
determine the effect of the circulation decay rate constant K on the distribu-
tion of turbulent energy. Recall that the mean velocity profiles were very sen-
sitive to the value of this parameter. Figures 17(a) and 17(b) show the normal-
ized spectra of the streamwise and cross-stream velocity fluctuation components
at 2X/L = 0.65 for two values of the decay rate constant: K = 0.00125, the
value used in the model, and K = 0.000625, one-half the previous value. Since
the mean velocity is critically dependent upon K, the flow in the latter case
is far from correct. However, it can be seen that the overall spectral shapes
are the same, the only difference being a shift in the tonal frequencies, Thus,
it can be concluded that the circulation decay rate parameter has very little
effect on the distribution of turbulent energy.

14



CONCLUSIONS

A vortex model of turbulent flow in a rectangular cavity has been devel-~
oped and subjected to extensive comparison with experimental data. This study
has resulted in the following conclusions:

1. When vorticity generation on the walls of the cavity is taken into
account, the vortex model does reasonably well in predicting the mean velocity
profiles of the turbulent cavity flow, particularly in regions where the flow
is essentially two~dimensional. The prediction deteriorates in regions where
the flow becomes more fully three-dimensional.

2, The vortex model tends generally to overpredict the turbulent inten-
sities, again being more accurate in regions where the flow is nearly two-
dimensional but high by a factor of approximately 2 as three-dimensional
effects become important. This characteristic should be greatly improved if
a means for energy transfer to the third dimension could be included in the
model in a computationally efficient manner.

3. The wvortex model contains unrealistic low-frequency power, especially
where the model is orderly. The importance of this power is greatly diminished
as the model becomes disordered.

4. The vortex model appears capable of reproducing f£low phenomena such as
the cavity feedback oscillation. However, frequencies are changed by the
incompressible nature of the model.

5. The spectral distribution of power predicted by the model is quite
reasonable when the model is disordered. There is a tendency for overpredic-
tion at lower frequencies and underprediction at higher frequencies because
the model does not include an energy cascade mechanism.

Overall, this study indicates that vortex models merit further research as
means of simulating turbulent flow and of calculating the resulting noise gen-
eration. The most crucial area for further research is inclusion of three-
dimensionality and energy cascade in a computationally efficient manner. Fin-
ally, the similarity between the wortex model results and the actual measure-
ments in a turbulent flow suggests that a part of the turbulent flow is nearly
deterministic, "determined" by the initial and boundary conditions for the flow.
For example, every realization of the turbulent cavity flow includes a large
vortex within the cavity itself. It is this large—-scale behavior of the flow
which is being reproduced by the vortex model - quite possibly the same behavior
that has come to be called the "large-scale structure" of the flow.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 20, 1979
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APPENDIX

SYMBOLS
cavity depth
canplete elliptic integral of second kind
incomplete elliptic integral of second kind
circulation decay rate
convection velocity ratio
cavity length
Mach number
number of vortices in flow
Strouhal number
point in space
spectral density of velocity fluctuations in i-direction
ambient temperature
convection speed
total velocity components
free-stream velocity
velocity induced by wvortex segment
cavity width
dimensional Carteéian coordinates
position of transformed cavity cofner
nondimensional cavity depth
frequency of mode n
normal distance
displacement distance

mode index



APPENDIX
total pressure
ambient pressure
time
fluctuating velocity camponents.
Cartesian coordinates
nondimensional Cartesian coordinates
complex variable
inverse of Reynolds number
angle
constant in transformation
angle
circulation of ith wvortex
circulation in direction along width of cavity
circulation in xy-plane
dimensional time step
nondimensional time step
random displacements
Cartesian éoordinates in transform plane
complex potential
canplex variable
stream function
total vorticity
time average
ensemble average

canplex conjugate
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TABLE I.~ TEST CONDITIONS FOR VELOCITY SURVEYS

['ra =18.3° ¢, p, = 761.2 mm Hgd]

Cavity dimensions, Position of vertical survey,
cm cm from leading edge
Case L/D Test Mach numbers
Leading-edge { Trailing-edge
L W D g g
position position
1 4,0 5.08 5.11 0.78 1 0.116 0,226 0.362 0.9 ————
2 12.0 5.11 2,35 .146 .246 9.9
3 2.5 3.19 .78 .116 . 246 —_——
4 7.5 3.19 2.35 .116 .246 6.2
5 |16.0 3.19 5.01 . 146 .316 14.6
a1 mm Hg = 133 Pa.
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Figure 1.- Cavity geometry.
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Figure 3.- Effect of finite length of vortices.
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Figure 5.~ Schematic drawing of cavity apparatus in
open-jet anechoic flow facility.
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